AdvAlg2, Homework due Wednesday, 5/3

Express each degree measure as a radian measure using π .

4.
$$-45^{\circ}$$

6.
$$-315^{\circ}$$

Express each radian measure as a degree measure.

11.
$$\frac{3\pi^{R}}{2}$$

12.
$$\frac{4\pi^{R}}{3}$$

13.
$$-\frac{\pi^{\mathsf{F}}}{4}$$

12.
$$\frac{4\pi^{R}}{3}$$
 13. $-\frac{\pi^{R}}{4}$ 14. $-\frac{5\pi^{R}}{6}$ 15. $\frac{11\pi^{R}}{6}$

15.
$$\frac{11\pi^{R}}{6}$$

16.
$$-\frac{3\pi^{R}}{5}$$
 17. $\frac{7\pi^{R}}{4}$ 18. $\frac{13\pi^{R}}{6}$ 19. $\frac{5\pi^{R}}{12}$ 20. $-\frac{7\pi^{R}}{9}$

17.
$$\frac{7\pi^{F}}{4}$$

18.
$$\frac{13\pi^{R}}{6}$$

19.
$$\frac{5\pi^{R}}{12}$$

20.
$$-\frac{7\pi^{R}}{9}$$

Find the length of the arc on a circle with the given radius that is intercepted by a central angle of the given measurement. Use $\pi \approx \frac{22}{7}$.

24. 714 mm;
$$\frac{5\pi^{R}}{3}$$

25. 49 cm;
$$\frac{\pi^{R}}{4}$$

26. 0.56 cm;
$$\frac{9\pi^{R}}{4}$$

Find the radius of a circle in which the arc of given length is intercepted by the angle of given degree measure.

EXAMPLE
$$\widehat{AB}$$
: 8π ; $m^{\circ}(\alpha) = 120$

SOLUTION Since $m^{R}(\alpha) = \frac{\pi}{180} m^{\circ}(\alpha)$, you have

$$m^{\mathsf{R}}(\alpha) = \frac{\pi}{180} \cdot 120 = \frac{2\pi}{3}.$$

Then, since $s = r \cdot m^{\mathbb{R}}(\alpha)$, you have

$$8\pi = r \cdot \frac{2\pi}{3}$$
 and $r = 8\pi \cdot \frac{3}{2\pi} = 12$. Answer.

27.
$$\widehat{AB}$$
: 15π ; $m^{\circ}(\alpha) = 300$

28.
$$\widehat{AB}$$
: 21π ; $m^{\circ}(\alpha) = 150$

29.
$$\widehat{AB}$$
: $\frac{9\pi}{4}$; $m^{\circ}(\alpha) = 135$

29.
$$\widehat{AB}$$
: $\frac{9\pi}{4}$; $m^{\circ}(\alpha) = 135$ **30.** \widehat{AB} : $\frac{8\pi}{5}$; $m^{\circ}(\alpha) = 270$